Stable transformation of the cyanobacterium Synechocystis sp. PCC 6803 induced by UV irradiation.
نویسندگان
چکیده
Irradiation of the photoheterotrophic cyanobacterium Synechocystis sp. PCC 6803 with low levels of UV light allows for stable, integrative transformation of these cells by heterologous DNA. In this system, transformation does not rely on an autonomously replicating plasmid and is independent of homologous recombination. Cells treated with UV light in the absence of DNA and cells given DNA but not exposed to UV do not yield antibiotic-resistant colonies in platings of up to 2 X 10(8) cells. Optimal conditions for this UV-induced transformation are described. Analysis of the transformants indicates that (i) only a segment of the introduced plasmid is found in the DNA of the transformed cells; (ii) in independently isolated clones, DNA insertion apparently occurs at different sites in the chromosome; and (iii) hybridization data suggest that insertion in one of the transformants may have occurred into a region of the chromosome that is repeated or that integration of plasmid DNA may have been accompanied by a rearrangement or duplication of DNA sequences near the insertion site. DNA isolated from the primary transformants as well as a cloned fragment containing the UV-inserted plasmid sequence and flanking cyanobacterial DNA transform wild-type cells at a high frequency (5.0 X 10(-4) and 1.5 X 10(-5), respectively). Possible mechanisms of this transformation system are discussed, as are the potential uses of this system as an integrative cloning-complementation vector and as a mutagenic agent in which the genetic lesion is already tagged with a selectable marker.
منابع مشابه
Global gene expression profiles of the cyanobacterium Synechocystis sp. strain PCC 6803 in response to irradiation with UV-B and white light.
We developed a transcript profiling methodology to elucidate expression patterns of the cyanobacterium Synechocystis sp. strain PCC 6803 and used the technology to investigate changes in gene expression caused by irradiation with either intermediate-wavelength UV light (UV-B) or high-intensity white light. Several families of transcripts were altered by UV-B treatment, including mRNAs specifyin...
متن کاملFLAVODIIRON2 and FLAVODIIRON4 proteins mediate an oxygen-dependent alternative electron flow in Synechocystis sp. PCC 6803 under CO2-limited conditions.
This study aims to elucidate the molecular mechanism of an alternative electron flow (AEF) functioning under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetic linear electron flow, evaluated as the quantum yield of photosystem II [Y(II)], reaches a maximum shortly after the onset of actinic illumination. Thereafter, Y(II) transiently decrea...
متن کاملPhotokinesis of Cyanobacterium Synechocystis sp. PCC 6803
Motile cyanobacterium Synechocystis sp. PCC 6803 cells show photomovement with respect to the light stimulus. Under lateral irradiation, Synechocystis displays a phototactic gliding movement toward the light source by a twodimensional random biased walk. Under vertical irradiation, Synechocystis decreased the frequency of mean vectorial gliding speed dependent on the applied fluence rate, where...
متن کاملA single vector-based strategy for marker-less gene replacement in Synechocystis sp. PCC 6803
BACKGROUND The cyanobacterium Synechocystis sp. PCC 6803 is widely used for research on photosynthesis and circadian rhythms, and also finds application in sustainable biotechnologies. Synechocystis is naturally transformable and undergoes homologous recombination, which enables the development of a variety of tools for genetic and genomic manipulations. To generate multiple gene deletions and/...
متن کاملExploring native genetic elements as plug-in tools for synthetic biology in the cyanobacterium Synechocystis sp. PCC 6803
BACKGROUND The unicellular cyanobacterium Synechocystis sp. PCC 6803 has been widely used as a photoautotrophic host for synthetic biology studies. However, as a green chassis to capture CO2 for biotechnological applications, the genetic toolbox for Synechocystis 6803 is still a limited factor. RESULTS We systematically characterized endogenous genetic elements of Synechocystis 6803, includin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of bacteriology
دوره 165 3 شماره
صفحات -
تاریخ انتشار 1986